Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 281
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38597607

RESUMO

C-H bond ortho-substitution reaction has always been a significant and challenging topic in organic chemistry. We proposed a synthesis method based on microwave plasma torches. High-resolution mass spectrometry was used to monitor rapid reaction products. 2-Alkylbenzimidazole can be formed through the reaction of phenylnitrenium ion and nitriles on a millisecond scale. This reaction can achieve the one-step formation of benzimidazoles from benzene ring single-substituted compounds without the addition of external oxidants or catalysts. A similar C-H bond activation reaction can be accomplished with ketones. Meanwhile, the microwave plasma reactor was modified, and the resulting 2-methylbenzimidazole was successfully collected, indicating the device has good application potential in organic reactions such as C-H bond activation reaction.

2.
Anal Chem ; 96(16): 6106-6111, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38594830

RESUMO

This study explores the innovative field of pulsed direct current arc-induced nanoelectrospray ionization mass spectrometry (DCAI-nano-ESI-MS), which utilizes a low-temperature direct current (DC) arc to induce ESI during MS analyses. By employing a 15 kV output voltage, the DCAI-nano-ESI source effectively identifies various biological molecules, including angiotensin II, bradykinin, cytochrome C, and soybean lecithin, showcasing impressive analyte signals and facilitating multicharge MS in positive- and negative-ion modes. Notably, results show that the oxidation of fatty acids using a DC arc produces [M + O - H]- ions, which aid in identifying the location of C═C bonds in unsaturated fatty acids and distinguishing between isomers based on diagnostic ions observed during collision-induced dissociation tandem MS. This study presents an approach for identifying the sn-1 and sn-2 positions in phosphatidylcholine using phosphatidylcholine and nitrate adduct ions, accurately determining phosphatidylcholine molecular configurations via the Paternò-Büchi reaction. With all the advantages above, DCAI-nano-ESI holds significant promise for future analytical and bioanalytical applications.


Assuntos
Nanotecnologia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização por Electrospray/métodos , Citocromos c/química , Citocromos c/análise , Bradicinina/química , Bradicinina/análise , Angiotensina II/química , Angiotensina II/análise , Fosfatidilcolinas/química , Fosfatidilcolinas/análise , Soja/química
3.
Talanta ; 274: 125981, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38583325

RESUMO

Mass spectrometric analysis of non-volatile salts containing samples remains challenging due to salt-induced ion suppression and contamination. This challenge is even more pronounced for a liquid chromatography-mass spectrometry analysis, where the accumulation of salts in the transmission system poses an ongoing problem. In this study, a novel thermal assisted recrystallization ionization mass spectrometry (TARI-MS) device was developed to achieve efficient on-line desalting and prolonged analysis of saline samples. The core component of this device was a heated plate positioned between the electrospray unit and the MS inlet. The desalting mechanism was demonstrated as the spontaneous separation of target molecules from salts during the "crystallization" process. After optimization, the angle between the nebulizer and the heated plate was 45°; the distance between the front end of the heated plate and the MS inlet was 2 mm; the distance between the front edge of the heated plate and the center of the sample spray projected onto the heating plate was 3 mm; the distance between the emitter of nebulizer and the heated plate was 3 mm. TARI-MS realized direct analysis of eight drugs dissolved in eight commonly used non-volatile salts solutions (up to 0.5 mol/L). The high sensitivity, repeatability, linearity, accuracy, and intra- and inter-day precision of TARI-MS confirm its reliability as a robust tool for the analysis of saline samples. Furthermore, TARI-MS allowed continuous analysis of salty eluates of LC for up to nearly 1 h without maintenance and verified the feasibility of LC-MS analysis through detecting a five-drug mixture and a crude aripiprazole product. Finally, six impurities in the crude aripiprazole product were successfully detected by LC-TARI-MS. The established method holds promise for applications across academic and pharmaceutical domains.

4.
Anal Chem ; 96(14): 5664-5668, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38530953

RESUMO

Per- and polyfluoroalkyl substances (PFAS) have caused widespread environmental concern in recent years. Among them, the levels of perfluoroalkane sulfonyl fluorides (PFASFs) in the environment have rarely been reported due to the lack of sensitive analytical methods. Herein, a novel liquid chromatography-microwave plasma torch ionization-mass spectrometry (LC-MPTI-MS) technique was designed for the direct analysis of PFASFs in the environment. The collaborative action of reactive oxygen species (such as hydroxyl radicals) and the elevated temperature within the ambient MPTI environment results in the replacement of the fluorine atom in sulfonyl fluoride by oxygen, leading to the detection of perfluoroalkanesulfonic acid (PFSA) ions by MS. Concurrently, LC was employed to separate other PFSAs that are present in the environment. Three PFASFs exhibited good linearity within the range of 1-500 µg/L with R2 > 0.994. The limit of detections (LODs) and the limit of quantifications (LOQs) were measured at 39.32-87.87 and 131.07-292.90 ng/L, respectively. The method was utilized for the direct detection of spiked perfluorooctane sulfonyl fluoride (PFOSF) in wastewater with recoveries of 77.16 to 124.81%. Our approach circumvents the laborious process of chemical derivatization and is anticipated to serve as a robust tool for determining the levels and behaviors of PFASFs in the environment.

5.
Sci Rep ; 14(1): 100, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167599

RESUMO

Lewis lung carcinoma (LLC), as a widely used preclinical cancer model, has still not been genetically and genomically characterized. Here, we performed a whole-exome sequencing analysis on the LLC cell line to elucidate its molecular characteristics and etiologies. Our data showed that LLC originated from a male mouse belonging to C57BL/6L (a transitional strain between C57BL/6J and C57BL/6N) and contains substantial somatic SNV and InDel mutations (> 20,000). Extensive regional mutation clusters are present in its genome, which were caused mainly by the mutational processes underlying the SBS1, SBS5, SBS15, SBS17a, and SBS21 signatures during frequent structural rearrangements. Thirty three deleterious mutations are present in 30 cancer genes including Kras, Nras, Trp53, Dcc, and Cacna1d. Cdkn2a and Cdkn2b are biallelically deleted from the genome. Five pathways (RTK/RAS, p53, cell cycle, TGFB, and Hippo) are oncogenically deregulated or affected. The major mutational processes in LLC include chromosomal instability, exposure to metabolic mutagens, spontaneous 5-methylcytosine deamination, defective DNA mismatch repair, and reactive oxygen species. Our data also suggest that LLC is a lung cancer similar to human lung adenocarcinoma. This study lays a molecular basis for the more targeted application of LLC in preclinical research.


Assuntos
Adenocarcinoma , Carcinoma Pulmonar de Lewis , Neoplasias Pulmonares , Masculino , Humanos , Camundongos , Animais , Adenocarcinoma/patologia , Sequenciamento do Exoma , Camundongos Endogâmicos C57BL , Mutação , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética
6.
J Am Soc Mass Spectrom ; 35(2): 178-184, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38165091

RESUMO

The present study investigates the gas-phase alcoholysis reaction of benzylic halides under atmospheric pressure chemical ionization (APCI) conditions. The APCI corona discharge is used to initiate the novel reaction, which is monitored by ion trap mass spectrometry (IT-MS). The model compound α,α,α-trifluorotoluene is applied to observe the cascade methoxylation reaction during the +APCI-MS analysis, resulting in the formation of [PhC(OCH3)2]+. Based on the results of isotopic labeling and substrate expansion experiments, an addition-elimination mechanism is proposed: initially, the reaction was initiated by the dissociation of fluorine from PhCF3 under APCI condition, leading to the formation of [PhCF2]+; subsequently, two methanol molecules nucleophilicly attack [PhCF2]+ stepwisely, accompanied by the elimination of HF, yielding the product ion [PhC(OCH3)2]+. The proposed mechanism was further corroborated by theoretical calculations. The results of substrate scope expansion experiments suggest that this in-source reaction has the potential to differentiate the positional isomers of alcohols and phenols.

7.
Anal Chem ; 96(1): 317-324, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38154037

RESUMO

Arc-induced electrospray ionization mass spectrometry (AESI-MS) was developed during which alternating current electrospray is simply achieved through the arc plasma. The AESI source exploits the arc's temperature and charge properties to generate aerosols consisting of charged microdroplets. The electrospray region, in which organic molecules are contained within microdroplets, partially overlaps with the arc plasma region. Guided by the electric field, these molecules undergo ionization, yielding ionic target analytes. AESI represents a soft ionization method that combines the mechanisms of atmospheric pressure chemical ionization and electrospray ionization, facilitating the ionization of analytes with wide ranging polarities. The precisely targeted spraying area enhances ion entry into the mass analyzer, thereby enabling excellent ionization efficiency. The AESI source exhibits several notable advantages over the electrospray ionization source, including an elevated but comparable level of active species concentrations and types, simplified mass spectra for direct amino acid analysis, high salt tolerance, versatile analysis of compounds with varying polarities, and reliable quantitative analysis of amino acids in complex matrices. Overall, AESI broadens the methodologies employed to generate microdroplets, providing a technological and scientific framework for creating distinctive electrospray ionization techniques.

8.
Anal Chim Acta ; 1283: 341970, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37977803

RESUMO

N-glycans have a diversity of crucial biological roles in organisms. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has become an indispensable analytical instrument for biomolecules. However, due to the inherent low abundance, high structural heterogeneity, and poor ionization efficiency of N-glycans, as well as the extremely inhomogeneous co-crystal property using traditional matrices, the qualitation and quantitation of N-glycans by MALDI-MS remains challenging. In the present study, α-cyano-3-aminocinnamic acid (3-CACA) was reasonably designed and synthesized as a novel reactive matrix for N-glycan analysis. Combining with traditional matrix α-cyano-4-hydroxycinnamic acid (CHCA) as an acidic catalyst, a combinational matrix 3-CACA/CHCA was obtained with homogeneous co-crystallization and high derivatization efficiency, achieving the sensitive qualitation with the limits of detection low to femtomole and reproducible quantitation with good linearity (R2 > 0.998). As a result, the established method was successfully applied to the on-target derivatization and high-throughput quantification of N-glycans in eight varieties of the peach complex system, indicating that N-glycan has the potential to become a new biomarker for food allergy, and elucidating the prospective correlation between N-glycan epitopes and allergic reactions.


Assuntos
Polissacarídeos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Estudos Prospectivos , Polissacarídeos/análise , Catálise , Cristalização
9.
J Sep Sci ; 46(23): e2300415, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37802974

RESUMO

Sucrose esters (SEs) are crucial tobacco smoke flavor precursors and play a significant role in tobacco's functionality. Due to their structural complexity, the separation and analysis of SEs in tobacco remain a major challenge, and massive structures of SEs have not yet been fully identified. In this study, the fractions enriched in SEs were obtained from oriental and flue-cured tobacco through a series of pretreatments, and two types of SEs (Types I and II) were distinguished by liquid chromatography-tandem mass spectrometry (LC-MSn ) analysis, with Type II SEs newly characterized in tobacco. Five groups of main SEs were further purified using preparative high-performance LC (HPLC) coupled to an evaporative light scattering detector, and their structures were characterized by nuclear magnetic resonance spectrometry techniques including 1 H, 13 C, correlation spectroscopy, heteronuclear single quantum correlation, and heteronuclear multiple bond correlation. By combining LC-MSn and nuclear magnetic resonance spectrometry, the structures of eight SE isomers were finally proposed, of which four were newly identified. These findings further enhance the understanding of the structural diversity of SEs in tobacco, serving as a valuable reference for future research on the elucidation, synthesis, and metabolism of SEs.


Assuntos
Ésteres , Sacarose , Espectrometria de Massas , Cromatografia Líquida , Isomerismo , Cromatografia Líquida de Alta Pressão/métodos
10.
Anal Chem ; 95(45): 16505-16513, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37902600

RESUMO

De novo sequencing of oligonucleotides remains challenging, especially for oligonucleotides with post-transcriptional or synthetic modifications. Mass spectrometry (MS) sequencing can reliably detect and locate all of the modification sites in oligonucleotides via m/z variance. However, current MS-based sequencing methods exhibit complex spectra and low ion abundance and usually require coupled instrumentation. Herein, we demonstrate a method of oligonucleotide sequencing using TiO2/ZnAl-layered double oxide (LDO)-assisted laser desorption/ionization (LDI)-MS based on radical-induced dissociation (RID). ·CH2OH radicals can be produced on the surface of a TiO2/ZnAl-LDO matrix via ultraviolet light, inducing an attack on the active site of the oligonucleotide phosphate skeleton to create typical "a-, a-B-, c·-, d-, w-, and y"-type fragments. Compared with the spectra obtained via collision-based methods, such as collision-induced dissociation and higher-energy collisional dissociation, the LDI-MS spectra based on RID exhibit single-charged signals, fewer types of fragments, and a lower proportion of unknown noise peaks. We demonstrate full sequence coverage for a 6-mer 2'-O-methyl-modified oligonucleotide and a 21-mer small interfering RNA and show that RID can sequence oligonucleotides with modifications. Importantly, the mechanism responsible for the RID of the oligonucleotide phosphate skeleton was investigated through offline experiments, demonstrating consistent results with density functional theory calculations.


Assuntos
Oligonucleotídeos , Óxidos , Oligonucleotídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Fosfatos
11.
Anal Chem ; 95(36): 13683-13689, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37624983

RESUMO

Ultratrace organic pollutants in the environment pose severe threats to human health; hence, their accurate detection is essential. In this study, we develop a secondary solvent-free enrichment strategy based on bubbling extraction (BE). Especially, we used BE solid-phase microextraction and BE carbon nanotube paper absorption to capture aerosols from a liquid water surface, desorb analytes, and analyze the analytes using mass spectrometry. The application of a solvent-free enrichment strategy helps overcome technical challenges in implementing BE technology, including reproducibility, quantification, and sensitivity. This approach objectively demonstrates the enrichment efficiency of BE, resulting in improved mass spectrometry response and quantification. It effectively tackles the difficulties in detecting and quantifying ultratrace environmental pollutants in mass spectrometric analysis. The present study successfully conducted a quantitative analysis of 16 polycyclic aromatic hydrocarbons and 7 antibiotics in 48 environmental water samples. This strategy proved effective in detecting the presence and distribution of polar and nonpolar environmental pollutants in rivers and lakes. Moreover, this strategy has several advantages, such as ultrahigh sensitivity at the femtograms per liter level, good greenness, multiplexed quantitation, low sample consumption, and ease of operation. Overall, the utilization of the ultrasensitive and environmentally friendly BE approach presents a reliable and adaptable method for the identification of ultratrace environmental pollutants in water specimens, thereby enabling early monitoring of pollutant levels.

12.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123203, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37523848

RESUMO

A water-soluble turn-on fluorescent probe PNAP for pH has been designed and synthesized. PNAP was consist of pyrene as fluorophore and morpholine as receptor. Owing to the photoinduced electron transfer (PET) effect, the fluorescence of PNAP was quenched, while PNAP exhibited a remarkable "turn-on" fluorescence with the increase of acidity. Notably for its pKa of 2.15, PNAP was one of the pH fluorescent probes used in extremely acidic environments. Furthermore, PNAP also displayed good repeatability, strong anti-ion interference ability, high sensitivity and selectivity toward pH. In addition, PNAP has been successfully applied to the test strips and monitor the pH of environment water samples and realistic samples, showing its good promising prospect.

13.
J Hazard Mater ; 457: 131780, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37290352

RESUMO

Per- and polyfluoroalkyl substances (PFAS) have received increasing scientific and regulatory attention due to their global distribution and health hazards. However, little is known about the PFAS composition of fluorinated products commercially available in China. In this study, a sensitive and robust analytical method was proposed for the comprehensive characterization of PFAS in aqueous film-forming foam and fluorocarbon surfactants in the domestic market based on liquid chromatography-high resolution mass spectrometry in full scan acquisition mode followed by parallel reaction monitoring mode. Consequently, a total of 102 PFAS from 59 classes were elucidated, of which 35 classes are reported for the first time, including 27 classes of anionic, seven classes of zwitterionic, and one class of cationic PFAS. The anionic-type products are mainly C6 fluorotelomerization-based (FT-based) PFAS. Perfluorooctanoic acid and perfluorooctane sulfonate are negligible, while some known electrochemical fluorination-based long-chain precursors in zwitterionic products are worthy of concern because of their high abundance and potential degradation. New precursors detected in zwitterionic products are FT-based PFAS, for example, 6:2 FTSAPr-AHOE and 6:2 FTSAPr-diMeAmPrC. The structural elucidation of PFAS in commercial products facilitates a better assessment of human exposure and environmental release.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Humanos , Poluentes Químicos da Água/análise , Fluorocarbonos/análise , Cromatografia Líquida , Água/análise , China
14.
J Mater Chem B ; 11(28): 6634-6645, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37366035

RESUMO

The peroxidase (POD)-like catalytic activity of various nanozymes was extensively applied in many significant fields. In this study, a thiol-functionalized MOF-loaded PdPt nanocomposite (UiO-66-(SH)2@PdPt) was fabricated, which possesses superior and selective POD-like activity with strong affinity towards H2O2 and 3,3',5,5'-tetramethylbenzidine under mild conditions. The POD-like property of UiO-66-(SH)2@PdPt was used to sensitively detect the concentration of D-glucose under near-neutral (pH = 6.5) conditions. The detection limit of D-glucose was as low as 2.7 µM, and the linear range of D-glucose was 5-700 µM. In addition, UiO-66-(SH)2@PdPt could accelerate the oxidative coupling chromogenic reaction of chlorophenol (CP) and 4-aminoantipyrine (4-AAP) in the presence of H2O2. Based on this phenomenon, a simple and visualized sensing array for the identification of chlorophenol contaminant isomers was further constructed to finally achieve the effective differentiation of three monochlorophenol isomers and six dichlorophenol isomers. Furthermore, a colorimetric detection method for 2-chlorophenol and 2,4-dichlorophenol was established. This work provides an effective means to improve the catalytic activity and selectivity of nanozymes by introducing an ideal carrier, which will be of significant value for the design of efficient nanozymes.


Assuntos
Clorofenóis , Nanopartículas , Compostos Organometálicos , Glucose/química , Peroxidase/química , Colorimetria/métodos , Peróxido de Hidrogênio/química , Peroxidases/química , Corantes
15.
J Proteome Res ; 22(3): 885-895, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36725203

RESUMO

Being part of the human diet, peach is an important fruit consumed worldwide. In the present study, a systematic first insight into the N-glycosylation of peach fruit during ripening was provided. First, N-glycome by reactive matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry indicated that 6 of 24 N-glycans of peach were differentially expressed. Second, a comparative N-glycoproteome was characterized via 18O-tagged N-glycosylation site labeling followed by nano-liquid chromatography-electrospray ionization-tandem mass spectrometry (nLC-ESI-MS/MS). Totally 1464 N-glycosites on 881 N-glycoproteins were identified, among which 291 N-glycosites on 237 N-glycoproteins were expressed differentially with a fold change value of 1.5 or 0.67. The enrichment analysis of GO and KEGG revealed that four pathways including other glycan degradation, phenylpropanoid biosynthesis, amino sugar and nucleotide sugar metabolism, and protein processing in endoplasmic reticulum were mainly enriched, in which several important N-glycoproteins with dynamic change during fruit ripening were further screened out. Our findings on a large scale for N-glycosylation analysis of peach fruit during ripening may provide new molecular insights for comprehending N-glycoprotein functions, which should be of great interest to both glycobiologists and analytical chemists.


Assuntos
Prunus persica , Humanos , Prunus persica/genética , Prunus persica/metabolismo , Espectrometria de Massas em Tandem , Frutas/genética , Frutas/metabolismo , Glicômica , Glicosilação , Glicoproteínas/genética , Glicoproteínas/metabolismo
16.
Environ Sci Technol ; 57(10): 4180-4186, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36848521

RESUMO

Perfluorooctane sulfonyl fluoride (PFOSF) and perfluorohexane sulfonyl fluoride (PFHxSF) were listed as persistent organic pollutants by the Stockholm Convention in 2009 and 2022, respectively. To date, their concentrations in environmental samples have not been reported due to the lack of sensitive methods. Herein, a novel chemical derivatization was developed for quantitative analysis of trace PFOSF and PFHxSF in soil by derivatizing them to the corresponding perfluoroalkane sulfinic acids. The method showed good linearity in the range from 25 to 500 ng L-1 with correlation coefficients (R2) better than 0.99. The detection limit of PFOSF in soil was 0.066 ng g-1 with recoveries in the range of 96-111%. Meanwhile, the detection limit of PFHxSF was 0.072 ng g-1 with recoveries in the range of 72-89%. Simultaneously, perfluorooctane sulfonic acid (PFOS) and perfluorohexane sulfonic acid (PFHxS) were also detected accurately without being affected by the derivative reaction. By applying this method in an abandoned fluorochemical manufacturing facility, PFOSF and PFHxSF were successfully detected at concentrations ranging from 2.7 to 357 ng g-1 and 0.23 to 26 ng g-1 dry weight, respectively. It is very interesting that 2 years after factory relocation, there still exists high concentrations of PFOSF and PFHxSF, which is of concern.


Assuntos
Fluorocarbonos , Ácidos Sulfínicos , Espectrometria de Massas em Tandem/métodos , Solo , Cromatografia Líquida , Fluorocarbonos/análise
17.
J Org Chem ; 88(4): 2550-2556, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35043626

RESUMO

A simple, green halide-catalyzed protocol for disulfuration of indole derivatives with N-dithiophthalimides has been developed. This C-H disulfide reaction proceeded smoothly at room temperature with economical LiBr as catalyst, providing an effective method for the synthesis of novel unsymmetrical disulfides. A series of 3-dithioindole derivatives were obtained in high yields with good functional group tolerance; moreover, the wide scope of Harpp reagents (aryl, benzyl, primary, secondary, tertiary) confirmed the practicability of this approach.

18.
J Agric Food Chem ; 71(1): 952-962, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36541565

RESUMO

Glycans recently attracted considerable attention as the proposal of cross-reactive carbohydrate determinants for food allergy. Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) is powerful in analyzing biomolecules, while its applications in glycans are still challenging. Herein, a novel reactive matrix-assisted laser desorption/ionization (MALDI) matrix, 2-hydrazinoterephthalic acid, was rationally designed and synthesized. It provides uniform co-crystallization with glycans and only produces deprotonated ions with high intensities in the negative-ion mode. In combination with sinapic acid, a rapid and high-throughput method was established for on-target analysis of glycans with a superior limit of detection at the femtomole level and a good linearity (R2 > 0.999). Furthermore, the established method was successfully applied to quantify N-glycans in different cultivars and tissues of peach [Prunus persica (L.) Batsch]. Our work suggests the potential role of N-glycans as biomarkers for food-borne allergy and lays a methodological foundation for the elucidation of the possible relationship between carbohydrate epitopes and food allergy.


Assuntos
Hipersensibilidade Alimentar , Prunus persica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Polissacarídeos/química , Íons , Lasers
19.
Anal Chem ; 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36562720

RESUMO

The atmospheric oxidation of chemicals has produced many new unpredicted pollutants. A microwave plasma torch-based ion/molecular reactor (MPTIR) interfacing an online mass spectrometer has been developed for creating and monitoring rapid oxidation reactions. Oxygen in the air is activated by the plasma into highly reactive oxygen radicals, thereby achieving oxidation of thioethers, alcohols, and various environmental pollutants on a millisecond scale without the addition of external oxidants or catalysts (6 orders of magnitude faster than bulk). The direct and real-time oxidation products of polycyclic aromatic hydrocarbons and p-phenylenediamines from the MPTIR match those of the long-term multistep environmental oxidative process. Meanwhile, two unreported environmental compounds were identified with an MPTIR and measured in the actual water samples, which demonstrates the considerable significance of the proposed device for both predicting the environmental pollutants (non-target screening) and studying the mechanism of atmospheric oxidative processes.

20.
Anal Chem ; 94(50): 17360-17364, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36473082

RESUMO

Aerosols generated by bubble bursting have been proved to promote the extraction of analytes and have ultrahigh electric fields at their water-air interfaces. This study presented a simple and efficient ionization method, carbon dioxide microbubble bursting ionization (CDMBI), without the presence of an exogenous electric field (namely, zero voltage), by simulating the interfacial chemistries of sea spray aerosols. In CDMBI, microbubbles are generated in situ by continuous input of carbon dioxide into an aqueous solution containing low-concentration analytes. The microbubbles extract low- and high-polarity analytes as they pass through the aqueous solution. Upon reaching the water-air interface, these microbubbles burst to produce charged aerosol microdroplets with an average diameter of 260 µm (8.1-10.4 nL in volume), which are immediately transferred to a mass spectrometer for the detection and identification of extracted analytes. The above analytical process occurs every 4.2 s with a stable total ion chromatogram (relative standard deviation: 9.4%) recorded. CDMBI mass spectrometry (CDMBI-MS) can detect surface-active organic compounds in aerosol microdroplets, such as perfluorooctanoic acid, free fatty acids epoxidized by bubble bursting, sterols, and lecithins in soybean and egg, with the limit of detection reaching the level of fg/mL. In addition, coupling CDMBI-MS with an exogenous voltage yields relatively weak gains in ionization efficiency and sensitivity of analysis. The results suggested that CDMBI can simultaneously accomplish both bubbling extraction and microbubble bursting ionization. The mechanism of CDMBI involves bubbling extraction, proton transfer, inlet ionization, and electrospray-like ionization. Overall, CDMBI-MS can work in both positive and negative ion modes without necessarily needing an exogenous high electric field for ionization and quickly detect trace surface-active analytes in aqueous solutions.


Assuntos
Dióxido de Carbono , Microbolhas , Espectrometria de Massas , Aerossóis/química , Água/química , Espectrometria de Massas por Ionização por Electrospray/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...